Максимальная глубина всасывания для насосов

Очень часто задают вопросы - почему насосная станция не способна всасывать с глубины более 9 метров. Неужели нельзя поставить просто более мощный насос?

Попробую объяснить, а точнее напомнить суть этого явления, т.к. все это проходили на уроке физики при изучении темы «атмосферное давление». 

Для начала, немного истории:

До середины 17 века считалось неприемлемым утверждение древнегреческого ученого Аристотеля о том, что вода поднимается поршнем насоса потому, что природа не терпит пустоты.

В 1640 г. в Италии герцог Тосканский решил устроить фонтан на террасе своего дворца. Для подачи воды из озера был построен трубопровод и насос большой длины, каких до этого еще не строили. Но оказалось, что система не работает — вода в ней поднималась только до 10,3 м над уровнем водоёма. 

Недоумевающие строители обратились за помощью Галилею, который сострил, что, вероятно, природа перестоит бояться пустоты на высоте более 34 футов, но все же предложил разобраться в этом своему ученику Торричелли. Поиски причин упрямства воды и опыта с более тяжелой жидкости – ртутью, принятые в 1643 году Торричелли привели к открытию атмосферного давления.

Стеклянную трубочку, длиной 1 м, запаянную с одного конца, наполняют доверху ртутью. Затем, плотно закрыв отверстие пальцем, трубочку поворачивают и опускают в чашу с ртутью. После этого палец убирают. Ртуть из трубки начинает выливаться, но не вся!

Осмысливая результаты эксперимента, Торричелли делает 2 вывода: в пространстве над ртутью в трубке нет воздуха (позже его назовут «торричеллиевой пустотой»), а ртуть не выливается из трубки обратно в сосуд потому, что атмосферный воздух давит на поверхность ртути в сосуде. Из этого следовало, что воздух имеет вес.

Столб ртути в трубке установился на высоте 760 мм над поверхностью ртути в сосуде. Вес столба ртути сечением в 1 см2 равен 1,033 кг, т. е. в точности равен весу столба воды такого же сечения высотой 10,3 м. Именно с такой силой атмосфера давит на каждый квадратный сантиметр любой поверхности, в том числе и на поверхность нашего тела.

Точно также, если в опыте с ртутью вместо неё в трубку налить воды, то столб воды будет высотой 10,3 метра.

Чем  меньше атмосферное давление, тем на меньшую высоту может подняться жидкость (т.е. чем выше над уровнем моря, например в горах, тем с меньшей глубины может всасывать насос).   

Чем  меньше плотность жидкости, тем с большей глубины можно её выкачивать, и наоборот, при большей плотности глубина всасывания уменьшится.   

Например, ту же ртуть, при идеальных условиях, можно поднять с высоты не более 760 мм.   

Почему же в расчетах получился столб жидкости высотой 10,3 м, а насосы всасывают только с 9 метров?   

Ответ достаточно простой:   

- во-первых, расчет выполнен при идеальных условиях,   

- во-вторых, любая теория не дает абсолютно точных значений, т.к. формулы эмпирические.   

- и в-третьих, всегда существуют потери: во всасывающей линии, в насосе, в соединениях.   

Т.е. не возможно в обычных водяных насосах создать разряжение, достаточное для того, чтобы вода поднялась выше.   

Итак, какие выводы из всего этого можно сделать:   

1. Насос не всасывает жидкость, а лишь создает разряжение на своём входе (т.е. уменьшает атмосферное давление во всасывающей магистрали). Вода выдавливается в насос атмосферным давлением.   

2. Чем больше плотность жидкости (например, при большом содержании в ней песка), тем меньше высота всасывания.   

3. Рассчитать высоту всасывания (h) можно, зная, какое разряжение создает насос и плотность жидкости по формуле:   

h = P / ( ρ* g) - x,   

где P – атмосферное давление, - плотность жидкости. g – ускорение свободного падения, x – величина потерь (м).   

Примечание: формула может использоваться для расчета высоты всасывания при нормальных условиях и температуре до +30°С.   

Также хочется добавить, что высота всасывания (в общем случае) зависит от вязкости жидкости, длины и диаметра трубопровода и температуры жидкости.   

Например при увеличении температуры жидкости до +60°С, высота всасывания уменьшается почти в два раза.   

Это происходит потому, что возрастает давление насыщенных паров в жидкости.   

В любой жидкости всегда присутствуют пузырьки воздуха.   

Думаю, все видели, как при закипании сначала появляются маленькие пузырьки, которые затем увеличиваются, и происходит кипение. Т.е. при кипении, давление в пузырьках воздуха становится больше, чем атмосферное.   

Давление насыщенных паров и есть давление в пузырьках.   

Увеличение давления насыщенных паров приводит к тому, что жидкость закипает при более низком давлении. А насос, как раз и создает в магистрали пониженное атмосферное давление.   

Т.е. при всасывании жидкости при высокой температуре, существует возможность её закипания в трубопроводе. А никакие насосы не могут всасывать кипящую жидкость. 

В конце дам еще пару рекомендаций:  старайтесь  везде, где возможно использовать погружные насосы. Никогда не используйте насосы на всасывание там, где глубина всасывания приближается к максимальной, т.к. всегда остается вероятность, что в измерении имеется погрешность, условия могут чуть изменится и насос перестанет работать.

Так же необходимо помнить, что 1 метр всасывания уменьшает расходные характеристики насоса примерно на 10%. Поэтому, чем больше глубина всасывания, тем мощнее приходится ставить насос. Что весьма не правильно и не экономично.

Нужна
консультация?
Подробно расскажем о наших услугах, видах работ и типовых проектах, рассчитаем стоимость и подготовим индивидуальное предложение!